A Pseudo-Boolean Framework for Computing Rearrangement Distances between Genomes with Duplicates
نویسندگان
چکیده
Computing genomic distances between whole genomes is a fundamental problem in comparative genomics. Recent researches have resulted in different genomic distance definitions, for example, number of breakpoints, number of common intervals, number of conserved intervals, and Maximum Adjacency Disruption number. Unfortunately, it turns out that, in presence of duplications, most problems are NP-hard, and hence several heuristics have been recently proposed. However, while it is relatively easy to compare heuristics between them, until now very little is known about the absolute accuracy of these heuristics. Therefore, there is a great need for algorithmic approaches that compute exact solutions for these genomic distances. In this paper, we present a novel generic pseudo-boolean approach for computing the exact genomic distance between two whole genomes in presence of duplications, and put strong emphasis on common intervals under the maximum matching model. Of particular importance, we show three heuristics which provide very good results on a well-known public dataset of gamma-Proteobacteria.
منابع مشابه
How Pseudo-boolean Programming Can Help Genome Rearrangement Distance Computation
Computing genomic distances between whole genomes is a fundamental problem in comparative genomics. Recent researches have resulted in different genomic distance definitions: number of breakpoints, number of common intervals, number of conserved intervals, Maximum Adjacency Disruption number (MAD), etc. Unfortunately, it turns out that, in presence of duplications, most problems are NP–hard, an...
متن کاملA Pseudo-boolean Programming Approach for Computing the Breakpoint Distance Between Two Genomes with Duplicate Genes
Comparing genomes of different species has become a crucial problem in comparative genomics. Recent research have resulted in different genomic distance definitions: number of breakpoints, number of common intervals, number of conserved intervals, Maximum Adjacency Disruption number (MAD), etc. Classical methods (usually based on permutations of gene order) for computing genomic distances betwe...
متن کاملA Linear Time Approximation Algorithm for the DCJ Distance for Genomes with Bounded Number of Duplicates
Rearrangements are large-scale mutations in genomes, responsible for complex changes and structural variations. Most rearrangements that modify the organization of a genome can be represented by the double cut and join (DCJ) operation. Given two genomes with the same content, so that we have exactly the same number of copies of each gene in each genome, we are interested in the problem of compu...
متن کاملSoRT2: a tool for sorting genomes and reconstructing phylogenetic trees by reversals, generalized transpositions and translocations
SoRT(2) is a web server that allows the user to perform genome rearrangement analysis involving reversals, generalized transpositions and translocations (including fusions and fissions), and infer phylogenetic trees of genomes being considered based on their pairwise genome rearrangement distances. It takes as input two or more linear/circular multi-chromosomal gene (or synteny block) orders in...
متن کاملAncestral Genome Organization: An Alignment Approach
We present a comparative genomics approach for inferring ancestral genome organization and evolutionary scenarios, based on present-day genomes represented as ordered gene sequences with duplicates. We develop our methodology for a model of evolution restricted to duplication and loss, and then show how to extend it to other content-modifying operations, and to inversions. From a combinatorial ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of computational biology : a journal of computational molecular cell biology
دوره 14 4 شماره
صفحات -
تاریخ انتشار 2007